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Abstract

A remarkable shell structure is described that, due to a particular
combination of geometry and initial stress, has zero stiffness for any
finite deformation along a twisting path; the shell is in a neutrally sta-
ble state of equilibrium. Initially the shell is straight in a longitudinal
direction, but has a constant, non-zero curvature in the transverse di-
rection. If residual stresses are induced in the shell by, e.g., plastic
deformation, to leave a particular resultant bending moment, then an
analytical inextensional model of the shell shows it to have no change
in energy along a path of twisted configurations. Real shells become
closer to the inextensional idealization as their thickness is decreased;
experimental thin-shell models have confirmed the neutrally stable con-
figurations predicted by the inextensional theory. A simple model is
described that shows that the resultant bending moment that leads to
zero stiffness gives the shell a hidden symmetry, which explains this
remarkable property.

1 Introduction

A novel zero stiffness structure is described. The structure is a thin shell
that is initially straight in a longitudinal direction, but has a uniform, non-
zero curvature in the transverse direction. The structure is prestressed, and
the interaction of the elastic properties with the prestress is such that the
structure can be deformed without any applied load; this is not a local
phenomenon — the structure can continue to be deformed in a finite closed
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Figure 1: A series of different configurations of the same zero-stiffness shell
structure. In each configuration, the shell is held in place by no more than
the friction with the underlying surface. The shell can be transformed be-
tween configurations in both directions, clockwise and anticlockwise. The
analytical model in Section 2 predicts that the shell will, in each case, be
wrapped around an underlying cylinder (see Figure 3) of constant radius;
and it can be seen that this is the case here.

path. Equivalently, the structure is neutrally stable: there is no change in
total internal strain energy as the structure is deformed, even though any
particular component of strain energy will vary. An experimental model of
this structure, made from a sheet of Copper Beryllium of thickness 0.1 mm
and width 30 mm is shown in Figure 1.

The ability to deform a structure without load is quite unexpected when
initially observed, and is clearly a function of the prestress that the shell
carries. Certainly it is well known that the stiffness of structures changes
with applied load. Stable structures can become unstable when loaded: a
simple example is the buckling of a strut through the application of axial
load. At the cusp between stability and instability there may then be a
point of neutral stability, where a structure has zero stiffness: to first order,
there is no change in load with displacement. However, while typically for
buckling phenomena this point of neutral stability/zero stiffness is isolated,
it is also possible to engineer systems which, when they buckle, are neutrally
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Figure 2: (a) A shell that is straight longitudinally, but curved transversely,
with two coiling modes, (b) and (c). A configuration change from (a) to (b)
involves same-sense bending: the centres of curvature are on the same side
of the shell. A configuration change from (a) to (c) involves opposite-sense
bending : the centres of curvature are on opposite sides of the shell.

stable for large deformations (Tarnai, 2003).
The stiffness of structures also changes through prestress, where the

structure is loaded against itself. A classical example of this behaviour
is provided by tensegrity structures (Calladine, 1978; Guest, 2010), which
typically rely on prestress in order to be able to act as structures at all.
However, even for tensegrities with rigid compression members, increasing
the prestress can reduce the stiffness of some modes of deformation, and for
extreme levels of prestress, can also lead to structures with zero stiffness,
even for large deformations (Schenk et al., 2007).

The present paper deals with thin shell structures that are straight lon-
gitudinally, but uniformly curved in the transverse direction, as shown in
Figure 2(a). Shell structures of this type are used in steel tape measures
and also as lightweight deployable booms for spacecraft (Rimrott, 1965).
The mechanics of such structures has been studied extensively (Mansfield,
1973; Seffen and Pellegrino, 1999), although until recently most studies have
focused on structures that are both isotropic and initially unstressed.
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Recently, it has become clear that interesting properties, and in partic-
ular bistability, can be engendered if these curved thin shell structures are
made to be anisotropic (Guest and Pellegrino, 2006), or if the structures are
prestressed (Kebadze et al., 2004). If the shells are given the correct set of
anisotropic bending properties, e.g., through being manufactured in fibre-
reinforced plastic, then the shell can be made bistable so that the second
stable state has the same sense of bending, as shown in Figure 2(a)&(b).
Alternatively, if an isotropic shell is correctly prestressed, then the shell can
be made bistable with the second stable state having the opposite sense of
bending, as shown in Figure 2(a)&(c). In this case, in the initial configura-
tion, the shell is prestressed in bending, so that it wishes to coil up, but this
is prevented by the structural depth of the curved shape. Pellegrino (2005)
describes a shell that exploits this mode while ensuring that the two states
have the same stored strain energy, so that a partially coiled shell can coil
and uncoil without change of energy, and is neutrally stable. This is the
only previous example of a zero stiffness shell of which we are aware.

The present paper explores the case of an isotropic shell which is pre-
stressed in the opposite sense to that studied in Kebadze et al. (2004), so
that the prestress favours same-sense bending. It will show that bistability
cannot be engendered, but remarkably, for a particular value of prestress,
the structure can be left without any torsional stiffness.

2 Analytical model

The basic analytical model that we use is essentially identical to that de-
scribed in Kebadze et al. (2004) and Guest and Pellegrino (2006). We make
two geometric assumptions: that the shell is inextensional; and that the
curvature of the shell is uniform across its mid-surface. The inextensional
assumption is valid for thin shells, where the energy required to stretch the
shell dwarfs the energy required to bend the shell. A consequence of our
assumptions is that we are neglecting boundary effects; for further discus-
sion of this, see Galletly and Guest (2004). The two geometric assumptions
together imply that we can consider the shell mid-surface as lying on an
underlying cylindrical surface, as shown in Figure 3. The (uniform) curva-
ture of the surface can then be described in terms of two parameters, the
curvature of the underlying cylinder C, and the orientation of the local axes
(x, y) with respect to the axis of the cylinder, defined by an angle θ.

The curvature of the shell can thus be described by the curvature vector
κ

κ =

 κxx

κyy

2κxy

 =
C

2

1− cos 2θ
1 + cos 2θ
2 sin 2θ

 (1)

where the transformation to the x, y curvilinear coordinates is obtained
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Figure 3: Definition of the geometry of the shell in terms of an underlying
cylinder with curvature C. The angle θ specifies the orientation of the shell
with respect to the cylinder.

from, e.g., a Mohr’s circle construction, as described in Guest and Pelle-
grino (2006). Note that this assumes the definition κxy = −∂2w/dx dy for
the twisting curvature, as is standard in the plates and shells literature, in-
cluding Kebadze et al. (2004), but only half the value commonly used in the
composites literature, including Guest and Pellegrino (2006).

We assume an initial configuration for the shell with θ0 = 0 and C0 =
1/R, so the change in curvature to any other configuration is given by

∆κ =
C

2

 1− cos 2θ
1 + cos 2θ − 2

CR
2 sin 2θ

 (2)

We also assume that the shell is prestressed in the initial configuration. As
the shell is straight in the x-direction, it cannot sustain any moment/unit
length along the edge normal to the y-axis, so in the initial configuration
my = mxy = 0. However, because of the curvature in the y-direction, the
depth of the cross-section allows a uniform initial moment mx = m to be
equilibrated by mid-plane forces in the shell, as shown in Figure 4.

In a general configuration we define the moment/unit length carried by
the shell as a vector m,

m =

 mx

my

mxy

 (3)

with an initial value,

m0 =

m
0
0

 . (4)

We assume linear-elastic material behaviour, and therefore in a general con-
figuration, the moment will be given by

m = D∆κ + m0. (5)
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Figure 4: Initial prestress in the shell. The uniform moment/unit length
mx = m is equilibrated by a distribution of mid-plane forces in the shell. The
moment m is uniform throughout the shell, except for a narrow boundary
layer at the free ends.

The bending stiffness matrix D is given by

D = D

1 ν 0
ν 1 0
0 0 (1− ν)/2

 (6)

where ν is the Poisson’s ratio of the material, and D is the shell bending stiff-
ness, defined in terms of the Young’s modulus E, thickness t and Poisson’s
ratio as

D =
Et3

12(1− ν)2
(7)

We define the strain energy U as the energy stored in the shell per unit area
due to its deformation away from the initial configuration, and so

U =
1
2
∆κTD∆κ + ∆κTm0 (8)

Finally, we write everything in a non-dimensional form (with a hat )̂ in
terms of the bending stiffness, D, and initial radius of curvature R,

Û =
UR2

D
; D̂ =

D
D

; κ̂ = Rκ ; m̂ =
R

D
m ; Ĉ = CR ;

Kebadze et al. (2004) explored the behaviour of this system when the
initial moment m̂ = mR/D is positive, which leads to bistable behaviour.
The present paper notes the remarkable behaviour associated with the value

m̂ = −(1− ν) (9)

Figure 5 shows the variation of Û with Ĉ and θ for three values of m̂: m̂ = 0;
m̂ = −(1− ν); and m̂ = −2(1− ν).
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Figure 5: Polar plots of the non-dimensional energy Û plotted as a function
of Ĉ and θ for three values of initial moment m̂. The initial configuration
is labelled as M, and Û = 0 at this point. Contours are plotted for Û =
· · · ,−0.1, 0, 0.1, · · · , with Û = 0 plotted as a dashed line.

7



The key plot is Figure 5(b). For m̂ = −(1 − ν), there is no change in
stored energy Û with θ. Thus, from the initial configuration, a series of
new twisted configurations with the same underlying curvature Ĉ = 1 are
possible, and these are clearly shown in the experimental results shown in
Figure 1. The structure is in a state of neutral equilibrium, and has zero
stiffness, even for large excursions along this deformation path.

Figures 5(a)&(c) represent the behaviour of the shell for values of m̂
respectively greater or smaller than the critical value of −(1−ν). Figure 5(a)
shows the case where m̂ = 0, and is hence identical to the isotropic plot
in Guest and Pellegrino (2006). There are two equilibrium configurations,
marked M and N: M is the stable initial configuration, and N is an unstable
coiled configuration, where θ = π/2. In fact, for any value of m̂ in the
range 0 ≥ m̂ > −(1− ν) similar behaviour is observed, with a stable initial
configuration, and an unstable coiled configuration.

Figure 5(c) shows the case where m̂ is twice the critical value of −(1−ν).
Again there are two equilibrium configurations, marked M and N: M is the
initial configuration, which is now unstable, and N is a coiled configuration
with θ = π/2, which is now stable. In fact, for any value of m̂ < −(1 − ν)
similar behaviour is observed, with an unstable initial configuration, and a
stable coiled configuration. The energy Û is negative at N, but this is simply
a consequence of arbitrarily setting Û = 0 at the original configuration M.

Note that in each of the plots, there appears to be a maximum in Û at
Ĉ = 0, but this is simply an artefact of the way the data is plotted: Û will
continue to increase for Ĉ < 0, but this portion of the data is not plotted
in the present paper, as no interesting behaviour is observed in this regime
(unlike Kebadze et al. (2004), where additional stable states are found with
Ĉ < 0 for m̂ positive).

3 Experimental results

Experimental verification of the zero stiffness behaviour was obtained through
models made from a thin sheet of Copper Beryllium (CuBe). The basic man-
ufacturing protocol was as described in Kebadze et al. (2004). The shells
were formed in a curved initial state from annealed CuBe with t = 0.1 mm
and a width 30mm, which were then age-hardened to give a stress-free
curved shell.

The prestress moment was imposed by passing the unstressed shell through
a set of rollers, which leads to a residual moment m through the mechanism
described in Kebadze et al. (2004). Although Section 2 gives a precise value
of m for zero stiffness, it is actually difficult to predict the rolling parameters
that will give this value of m, as this depends on the precise strain-hardening
characteristics of the CuBe as it yields. Thus, in practice we proceeded by
trial and error to fine-tune the rolling process to give shells that had no tor-
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Figure 6: A conceptual model of the formation of a zero-stiffness shell from a
bimetallic disk. As the disk is heated from (a), it will initially form a domed
structure, (b). After further heating, the bending response will bifurcate and
become non-isotropic; and in the limit the structure will become cylindrical,
(c). The principal directions of bending in (c) are arbitrary — any other
choice of bending direction would lead to a twisted form of the structure the
same stored internal energy.

sional stiffness. The final result of this process is shown in Figure 1, where a
series of configurations of the same shell is shown, each with an underlying
curvature C ≈ 1/12.5 mm. In each configuration, the shell is only held in
place by friction with the underlying surface. We have not attempted any
detailed experimental measurements on these models.

4 Conceptual disk model

This section describes a simple conceptual model that has two aims: firstly it
will reveal a ‘hidden’ symmetry that provides an explanation for the particu-
lar value of prestress moment m that provides zero stiffness; and secondly, it
describes a zero stiffness shell structure that doesn’t require an assumption
that the shell is so thin that it can be considered to be inextensional.

Consider a thin circular bimetallic (e.g., brass and steel) flat disk, as
shown in Figure 6(a). As the disk is heated from its initial flat stress-free
state, the brass will want to expand more than the steel, and if the disk is
to remain flat, this will lead to a uniform residual moment in the shell. In
practise, the disk will dome slightly, as shown in Figure 6(b), but to do this
the surface changes its Gaussian curvature, which requires in-plane stretch-
ing (Calladine, 1983). At some point (which depends on the thickness of
the shell) a bifurcation will take place, following which the curvature will
no longer be uniform in all directions: in some arbitrary principal direction
the curvature will decrease, while the curvature will increase in the perpen-
dicular direction. As heating is further increased, the disk will approach a
cylindrical configuration, as shown in Figure 6(c); this process is described
in more detail by Freund (2000), and Seffen and McMahon (2007).
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It is clear that the process of heating a bimetallic disk must lead to a
zero-stiffness shell at any point after the disk has bifurcated. The bifurcation
takes place about an arbitrary axis; and whichever axis is chosen the stored
strain energy will be the same. Deforming the shell on the continuous path
through states with varying axes of bifurcation will not change the stored
energy, and hence it can be concluded that the path is neutrally stable. We
shall see that in the extreme case of a thin shell with no in-plane deformation,
this will reproduce the mode described in Section 2; but the bifurcated
bimetallic disk does not require any assumption about being thin, or about
boundary conditions, to have zero stiffness.

For the assumption of a thin inextensional shell, the bimetallic disk
model can be used to calculate the critical value of prestress moment found
in Section 2. Consider a preliminary state of the disk where the disk has
been heated, but is held flat. In this state, there will be a uniform (-ve)
moment due to the temperature change, mt, but no curvature:

mi =

mt

mt

0

 κi =

0
0
0

 (10)

Consider now that the disk is released, and is allowed to increase its curva-
ture in the y-direction until the moment my becomes zero, at which point it
has reached the initial state (m0,κ0) considered in Section 2. As the change
from the preliminary to the initial state is elastic, we can write

m0 = D(κ0 − κi) + mi (11)

and hence m
0
0

 = D

1 ν 0
ν 1 0
0 0 (1− ν)/2

 0
1/R
0

 +

mt

mt

0

 . (12)

To satisfy this equation in the y-direction, we must have

mt = −D

R
(13)

and hence
m =

Dν

R
− D

R
. (14)

Thus, the residual prestress moment, written in non-dimensional form,

m̂ =
mR

D
= −(1− ν) (15)

is exactly the critical moment identified in Section 2.
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5 Conclusion

The disk model presented in Section 4 has shown that the zero stiffness
mode identified in Section 2 can be explained simply by consideration of a
hidden symmetry of the shell structure: if the structure is flattened, then the
resultant moment in the shell doesn’t vary with direction, and bending about
any axis is equally preferable. There may be minor effects associated with
boundary conditions, but: (i) these didn’t have a noticeable effect on the
experimental structures that we manufactured; and (ii) they will certainly
not be present for a circular shell structure.
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